ISO/IEC JTC 1 SC 42 Artificial Intelligence - Working Group 4
Use Cases & Applications
   06/20/2019
Home

The quality of use case submissions will be evaluated for inclusion in the Working Group's Technical Report based the application area, relevant AI technologies, credible reference sources (see References section), and the following characteristics:

  • Data Focus & Learning: Use cases for AI system which utilizes Machine Learning, and those that use a fixed a priori knowledge base.
  • Level of Autonomy: Use cases demonstrating several degrees (dependent, autonomous, human/critic in the loop, etc.) of AI system autonomy.
  • Verifiability & Transparency: Use cases demonstrating several types and levels of verifiability and transparency, including approaches for explainable AI, accountability, etc.
  • Impact: Use cases demonstrating the impact of AI systems to society, environment, etc.
  • Architecture: Use cases demonstrating several architectural paradigms for AI systems (e.g., cloud, distributed AI, crowdsourcing, swarm intelligence, etc.)
No. 37 ID: Use Case Name: Leveraging AI to enhance adhesive quality
Application
Domain
Manufacturing
Deployment
Model
On-premise systems
StatusIn operation
ScopeBatch/Continuous/Discrete Manufacturing (Deployed in 75+ manufacturing lines in 10+ countries; Specifically identified the contributors to quality; predict potential quality failures).
Objective(s)Enhance Adhesive Quality, Performance Benchmarking
Short
Description
(up to
150 words)
Cerebra IOT signal intelligence platform provides the ability to have a holistic perspective and understanding of the sensitivity of the key parameters affecting output quality and ability to monitor and control the process in real-time. This will avoid variations in yields, build-up of inventories and missed customer deadlines.
Complete Description Cerebra IOT signal intelligence platform ingested 3+ years of process data and sensor data regarding plant operations from temperature, rpm, torque and pressure sensors which were strapped on to industrial mixers. These are the mandatory sensors for the operations. Cerebra used its episode detection algorithms (deep learning) to filter signal from noise and specifically identify the contributors to quality (anomaly signatures) that can then be used as signals to predict quality. It used its proprietary N-dimensional Euclidian distance-based scoring algorithms to normalize and present a unified score to the business team. This unified health score provided the process team a different lens to benchmark, specifically target and radically improve process efficiencies. Cerebra then leveraged its sophisticated ensemble models to predict potential quality failures allowing the operations team to take real-time actions to control process deviations. The signals identified in the earlier steps provide Model Explainability to the end-user for reasons behind Quality deviation.
StakeholdersManufacturing industries; Suppliers and Buyers; Environment
Stakeholders'
Assets,Values
Systems'
Threats &
Vulnerabilities
Challenges to accountability, New Security Threats.
Performance
Indicators (KPIs)
Seq. No. Name Description Reference to mentioned
use case objectives
4 Speed of improvement Higher convergence speed of the reinforcement algorithm is making the solution more attractive.
1 Prediction Accuracy To what extent has the model been able to predict correctly Provided ability as to % of times the quality complied
AI Features Task(s)Prediction
Method(s)N-dimensional Euclidian distance-based scoring algorithms
HardwareApplication Server: 64 GB RAM/ 16 Core / 500 GB HDD, Data Server: 128 GB RAM/ 16 Core, 3 TB HDD
Topology
Terms &
Concepts Used
Deep learning; Anomaly Signatures
Standardization
Opportunities
Requirements
Challenges
& Issues
Patented process if any, security restrictions
Societal Concerns Description Promoting sustainable industries, and investing in scientific research and innovation, are all important ways to facilitate sustainable development
SDGs to
be achieved
Industry, Innovation, and Infrastructure
Data Characteristics
Description
Source
Type
Volume (size)
Velocity
Variety
Variability
(rate of change)
Quality
Scenario Conditions
No. Scenario
Name
Scenario
Description
Triggering Event Pre-condition Post-Condition






Scenario Name Training
Step No. Event Name of
Process/Activity
Primary
Actor
Description of
Process/Activity
Requirement






Specification of training data
Scenario Name Evaluation
Step No. Event Name of
Process/Activity
Primary
Actor
Description of
Process/Activity
Requirement






Input of Evaluation
Output of Evaluation
Scenario Name Execution
Step No. Event Name of
Process/Activity
Primary
Actor
Description of
Process/Activity
Requirement






Input of Execution
Output of Execution
Scenario Name Retraining
Step No. Event Name of
Process/Activity
Primary
Actor
Description of
Process/Activity
Requirement






Specification of retraining data
References
No. Type Reference Status Impact of
use case
Originator
Organization
Link
1 Web link Leveraging Cerebra’s AI to enhance quality – from Quality Inspection to Quality Assurance Published as case study Use case take from this case study Flutura Business Solutions Pvt. Ltd. Link

  • Peer-reviewed scientific/technical publications on AI applications (e.g. [1]).
  • Patent documents describing AI solutions (e.g. [2], [3]).
  • Technical reports or presentations by renowned AI experts (e.g. [4])
  • High quality company whitepapers and presentations
  • Publicly accessible sources with sufficient detail

    This list is not exhaustive. Other credible sources may be acceptable as well.

    Examples of credible sources:

    [1] B. Du Boulay. "Artificial Intelligence as an Effective Classroom Assistant". IEEE Intelligent Systems, V 31, p.76-81. 2016.

    [2] S. Hong. "Artificial intelligence audio apparatus and operation method thereof". N US 9,948,764, Available at: https://patents.google.com/patent/US20150120618A1/en. 2018.

    [3] M.R. Sumner, B.J. Newendorp and R.M. Orr. "Structured dictation using intelligent automated assistants". N US 9,865,280, 2018.

    [4] J. Hendler, S. Ellis, K. McGuire, N. Negedley, A. Weinstock, M. Klawonn and D. Burns. "WATSON@RPI, Technical Project Review".
    URL: https://www.slideshare.net/jahendler/watson-summer-review82013final. 2013